Find the general solution, in degrees, of the equation 2 sin(3x+45°)= 1

A general way of solving these equations is getting them to the form sin(y)=k. In this case, to do so, we have to divide by 2 and then put y=3x+45° We then get sin(y)=1/2. You should know which angles have sine equal to 1/2: those are 30° and 150°.However, be careful: you have to write the solution including the fact that the sine is periodic! So the general solution is y= 30° + k360°, y=150°+k360°, for every integer value of k. Now we just remember what y was, and solve the equation for x. We get 3x+45° = 30°+k360° x = -5° + k120° = 115° + k120° and x=35°+k 120°. Usually, it is a good habit to write separately all the solutions lying in the interval [0°, 360°], and in this case those are x=35°,115°,155°,235°,275°,355°.

Answered by Cesare Giulio A. Maths tutor

8047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


log3 (9y + b) – log3 (2y – b) = 2, Find y in terms of b.


Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)


Find the integral of [ 2x^4 - (4/sqrt(x) ) + 3 ], giving each term in its simplest form


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences