Find the integral of (x+4)/x(2-x) .dx

In order to integrate the expression we must first rewrite it in terms of Partial Fractions i.e. A/x and B/(2-x), so that when multiplied together we have a fraction with same denominator as the expression we want to integrate. The numerator is then A(2-x)+B(x). We compare this to (x+4) and determine our values for A and B by equating the coefficients. 2A=4 therefore A=2. -A+B=1 therefor B=3. We now have a new integrand which is easier to solve, 2/x + 3/(2-x). Using our standard examples of integrals we see that the solution is 2ln|x|-3ln|2-x|. Be careful of the -x in 3/(2-x) as this affects the sign of ln when we integrate.

AT
Answered by Aaron T. Maths tutor

4229 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The volume of a cone is V = 1/3*pi*r^2*h. Make r the subject of the formula.


Take the 2nd derivative of 2e^(2x) with respect to x.


Use the product rule to differentiate y=2xsinx


Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning