How do I find the cartesian equation for a curve written in parametric form?

Reminder - a cartesian equation is written in terms of x and y (e.g. y = 2x + 3) while parametric equations are written with x and y separately in terms of t.

Example: Find the cartesian equation of the curve given by these parametric equations:

x = 2t + 1, y = 1/t (where t is not equal to zero)

First make t the subject in one of the equations.

x = 2t (then divide both sides by 2)

x/2 = t

Now substitute your result for t into the second equation.

y = 1/t (then substitute in t = x/2)

y = 1/(x/2) (then simplify)

y = 2/x

This is now in cartesian form.
 

Answered by Alexis O. Maths tutor

9588 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 5x^3 + 7x + 3 with respect to x


A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


How do I do implicit differentiation?


Differentiate with respect to x, x^2*e^(tan(x))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences