If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...

The first thought when trying to solve such a problem is that you might be able to write this sum as a geometric progression. Luckily, it is the case here as well, as we can observe that S is the derivative (with respect to x) of another sum: P = x + x^2 + x^3 + ... . We can easily find P = x * (1-x^N)/(1-x), where N tends to infinity so P reduces to P = x/(1-x). Now, in order to calculate S, we ca simply take the first order derivative of P and find that S=1/(1-x)^2.

Related Further Mathematics A Level answers

All answers ▸

Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.


Integrate f(x) = 1/(1-x^2)


Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


Find the general solution to the differential equation; y'' + 4y' = 24x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences