If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...

The first thought when trying to solve such a problem is that you might be able to write this sum as a geometric progression. Luckily, it is the case here as well, as we can observe that S is the derivative (with respect to x) of another sum: P = x + x^2 + x^3 + ... . We can easily find P = x * (1-x^N)/(1-x), where N tends to infinity so P reduces to P = x/(1-x). Now, in order to calculate S, we ca simply take the first order derivative of P and find that S=1/(1-x)^2.

HM
Answered by Horia M. Further Mathematics tutor

2670 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the differential equations dx/dt=2x+y+1 and dy/dt=4x-y+1 given that when t=0 x=20 and y=60. (A2 Further pure)


Understanding differentiation from first principle.


Given that z = a + bj, find Re(z/z*) and Im(z/z*).


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning