give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.

differentiating the equation gives dy/dx = 4x^3 - 12x^2 dy/dx = 4x^2(x - 3)

at a turning point, dy/dx = 0. Solving the equation 4x^2(x - 3) = 0 yeilds x = 0, x = 3

putting 0 and 3 back into the curves equation gives y = 27 when x = 0 y = 0 when x = 3

The coordinates are therefore (0,27) and (3,0).

To find out the nature of the turning points we must find the second derivative, d^2y/dx^2.

d^2y/dx^2 = 12x^2 - 24x

inputting the x values of the turning points gives us d^2y/dx^2 = 0 for (0,27), this is neither +ve or -ve, so the point is a point of inflection, d^2y/dx^2 = 36 for (3,0), this is positive, indicating an increase in gradient, so the the point is a minimum.

MB
Answered by Matthew B. Maths tutor

11538 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


The curve C has equation y=3x^3-11x+1/2. The point P has coordinates (1, 3) and lies on C . Find the equation of the tangent to C at P.


What is the product rule and when do you use it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences