a) When differentiating y, the method with each term is to 'times by the power and minus 1'. In order to apply this, we need every term to consist of a coefficient multiplied by a power of x. To start with we therefore need to rewrite the equation as y = 4x^3 - 5x^(-2). So, with the first term '4x^3' we first multiply by 3 and then take away 1 from the power. This gives '34x^2=12x^2'. We repeat with the second term to get '(-2)(-5)x^(-3)'=10x^(-3)'. Finally we rewrite the complete sum in the form the question is given, as dy/dx=12x^2 + 10/(x^3). b) When integrating y, we do the opposite. In other words, we 'add 1 to the power and divide by the new power'. This is easiest to do with the equation in the rewritten form as above. Taking the first term '4x^3' we add 1 to the power to get 4, then divide by this new power. This gives '(4x^4)/4= x^4'. Repeating with the second term we get '(-5x^-1)/(-1)=5x^(-1)'. Finally we rewrite in the original form and add the arbitrary constant 'c', to give 'x^4 + 5/x +c'.