What is the value of the integral of e^x from x = 1 to x = 2?

As the derivative of e^x is e^x, so is the integral (plus some constant). As we wish to find the value of the integral from x = 1 to x = 2, we substitute x=2 into e^x, and from that we subtract e^x with x=1. The answer is therefore e^2 - e^1, or equivalently e(e - 1).

Answered by Jake H. Maths tutor

3438 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


How would you express (11+x-x^2)/[(x+1)(x-2)^2] in terms of partial fractions?


The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences