A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM

a) The answer to this question is quite simple, it is all dependent on the pupil realising that they need to use the sine rule. This rule for this triangle is: BC/sin(BAC) = AC/sin(ABC) Once they get this equation then it is a simple case of rearranging the equation for AC: AC = BC * sin(ABC) / sin(BAC) Then they just need to plug in the numbers that are given in the question: AC = 20 * sin(50) / sin(68) AC = 16.5cm b) From the previous part we know that AC = 16.5 cm and we can figure out from the information in the question that angle ACB = 62 deg. We then have a new triangle of sides A, M and C. As M is the midpoint of BC, the length of MC is 10cm. We now have two sides and the angle in between them, hence we need to use the cosine rule to find AM. The cosine rule here is: AM^2 = MC^2 + AC^2 - (2 * MC * AC * cos(ACB)) AM^2 = 10^2 + 16.5^2 - (2 * 10 * 16.5 * cos(62)) This gives a length of AM = 14.7 cm

RS
Answered by Ravi S. Maths tutor

5081 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


How do you intergrate sin^2(x)?


A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning