a) Solve the following equation by completing the square: x^(2)+ 6x + 1= 0. b) Solve the following equation by factorisation: x^(2) - 4x - 5 = 0 c) Solve the following quadratic inequality: x^(2) - 4x - 5 < 0 (hint use your answer to part b)

a) x^(2) + 6x + 1 = 0 (x + 3)^(2) - 8 = 0 x = - 3 + sqrt(8) or x = - 3 - sqrt(8)

b) (x-5)(x+1) = 0 x = -1 or 5

c) using answer to part b: (x-5)(x+1) < 0 draw its graph then: -1<x<5

Answered by George M. Maths tutor

3958 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is Differentiation?


Find the equation of the tangent to the curve y = 2x^2 + x - 1 at the point where x = 1.


What is the factor theorem?


The curve C has the equation y = 2x^2 -11x + 13. Find the equation of the tangent to C at the point P (2, -1).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences