How do you integrate ln(x)?

Use the method of integration by parts. uv-integral(v.du/dx). Make u equal to ln(x) and dv/dx equal to 1. Therefore v=x and du/dx=1/x. Hence uv=xln(x). And v.du/dx=x/x=1. Substituting these into the 'by parts' formula gives xln(x)-integral(1 dx)= xln(x)-x+C (where C is the constant of integration)

Answered by Michael S. Maths tutor

2714 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the value of x for when f(x)=0. f(x)=9x^(2)-4


Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


How do I integrate ∫ xcos^2(x) dx ?


What is the difference between quotient rule, product rule and chain rule, and when to use them in differentiation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences