How do you integrate ln(x)?

Use the method of integration by parts. uv-integral(v.du/dx). Make u equal to ln(x) and dv/dx equal to 1. Therefore v=x and du/dx=1/x. Hence uv=xln(x). And v.du/dx=x/x=1. Substituting these into the 'by parts' formula gives xln(x)-integral(1 dx)= xln(x)-x+C (where C is the constant of integration)

Answered by Michael S. Maths tutor

2753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points P (2,3.6) and Q(2.2,2.4) lie on the curve y=f(x) . Use P and Q to estimate the gradient of the curve at the point where x=2 .


Express 3sinx - 2cosx in the form R(sin(x-a) given R>0 and 0<a<90°. Hence solve 3sinx - 2cosx = 1 in the interval 0<x<360°. What are the maximum and minimum values of 2sinx - 3cosx?


Find the partial fraction decomposition of the expression: (4x^2 + x -64)/((x+2)(x-3)(x-4)).


A factory produces cartons each box has height h and base dimensions 2x, x and surface area A. Given that the capacity of a carton has to be 1030cm^3, (a) Using calculus find the value of x for which A is a minimum. (b) Calculate the minimum value of A.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences