How do you integrate ln(x)?

Use the method of integration by parts. uv-integral(v.du/dx). Make u equal to ln(x) and dv/dx equal to 1. Therefore v=x and du/dx=1/x. Hence uv=xln(x). And v.du/dx=x/x=1. Substituting these into the 'by parts' formula gives xln(x)-integral(1 dx)= xln(x)-x+C (where C is the constant of integration)

MS
Answered by Michael S. Maths tutor

3104 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


Why does differentiation work like it does.


Given f(x): 2x^4 + ax^3 - 6x^2 + 10x - 84, and knowing 3 is a root of f(x), which is the value of a?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning