Use integration by parts to find the integral of sin(x)*exp(x)

First, we choose u=sin(x),v'=exp(x). Using differentiation and integration of standard exponential and trigonometric functions => u'=cos(x),v=exp(x). From this we use the formula for integration by parts which tells us that the integral of a product can be given by I=uv-int(vu'). Therefore I=sin(x)*exp(x)-int(exp(x)*cos(x)). Since we have another integral of a product, integration by parts must be applied again to our new integral which we can call I'=int(exp(x)*cos(x). Now, we choose u=cos(x),v'=exp(x) => u'=-sin(x),v=exp(x). Again, using the formula, we have I'= cos(x)*exp(x)-int(-sin(x)*exp(x)) I'=cos(x)*exp(x)+int(sin(x)*exp(x)). This seems to be unsolvable, since the trigonometric functions behave in a cycle under differentiation and integration, and exp(x) is unaffected. However, in this circumstance there is a trick that leads to your solution. Notice that in the equation for I' we have the integral of sin(x)*exp(x). This was what we were initially tasked with finding, and so this expression can be replaced simply with I, so I'=cos(x)*exp(x)+I. Now we have our expression for I' we can substitute it back into our equation for I, which leads to I=sin(x)*exp(x)-(cos(x)*exp(x)+I) I=sin(x)*exp(x)-cos(x)*exp(x)-I 2I=sin(x)*exp(x)-cos(x)exp(x) 2I=exp(x)[sin(x)-cos(x)] I=1/2exp(x)[sin(x)-cos(x)]+C. Ensure not to forget the constant of integration C at the end there.

PL
Answered by Philip L. Maths tutor

6620 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that x = cot y, show that dy/dx = -1/(1+x^2)


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


What is the product rule in differentiation?


A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning