How do you find the gradient of a curve?

Unlike a straight line, the gradient of a curve is not a constant i.e. not one single number. To find the gradient of a curve, you different the equation of the curve. To find the gradient at a specific point you then substitute its x and y values into the gradient equation. For example, for a curve with equation y=4x^2 + 2x -3, you will differentiate each term by multiplying by it's power and then lowering the power by one, like this: 4x^2 becomes (2)(4)(x^1) = 8x, then 2x becomes 2 and -3 becomes 0. Thus the differential is given by: dy/dx = 8x +2. If you wanted to know the gradient at say a point (2,17) then you simply substitute in 2 for x, giving: dy/dx = 8(2)+2 = 18.

Answered by Anna M. Maths tutor

30173 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How and when do you use integration by parts?


The gradient of a curve is given by dy/dx = 3 - x^2. The curve passes through the point (6,1). Find the equation of the curve.


Express 2/P(P-2) in Partial Fractions (C4)


Differentiate y=x*ln(x^3-5)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences