How do you form a Cartesian equation from two parametric equations?

If the two parametric equations have the form x = at + b and y = ct + d then the first step is to rearrange one to make the parameter 't' the subject. We then substitute this equation for 't' into the other parametric equation and rearrange to make y = f(x). In some cases, 't' may be raised to a power in either equation. It is usually quicker to start by rearranging the lowest order equation for 't' and substituting it into the higher order equation.

However, some questions may involve trigonometric functions e.g. x = sin^2(t) and y = cos(2t). We cannot simply rearrange these the same way. Instead we should list the associated trig identities for the functions involved. We see that cos(2t) = cos^2(t) - sin^2(t) = 1 - 2*sin^2(t) relates the equations for x and y alone. Substituting x and y in we find that y = 1 - 2x. The question will usually contain clues. For example, if cos(2t) is given then the double angle formula may be needed, hence the importance of listing all related identities by hand or mentally.

Answered by Alexander L. Maths tutor

13890 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given two functions x = at^3 and y = 4a, find dy/dx


How can you tell if a function is even or odd?


Find the x coordinate of the minimum point of the curve y = e3x - 6e2x + 32.


Prove that (root)2 is irrational


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences