Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)

y=ln([2x-1/2x=1]^1/2)- can be written as y= [0.5ln(2x-1)]-[0.5ln(2x+1)] due to laws of logs. Take first term -- (0.5ln(2x-1)) and substitute 2x-1 for u. so u=2x-1 and y=0.5lnu Now dy/du=1/2u and du/dx=2. to find dy/dx, times these 2 together - giving dy/dx=2/2u = 1/u = 1/2x-1 Doing the same method for the second term gives you that d/dx of 0.5ln(2x+1)is dy/dx= 1/2x+1 Therfore by subbing these back into the orignial equation,l the derivative of the enitre equation becomes dy/dx = (1/[2x-1])-(1/[2x+1])

Answered by Sam F. Maths tutor

10082 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


The curve C has the equation y = 2x^2 -11x + 13. Find the equation of the tangent to C at the point P (2, -1).


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences