Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)

y=ln([2x-1/2x=1]^1/2)- can be written as y= [0.5ln(2x-1)]-[0.5ln(2x+1)] due to laws of logs. Take first term -- (0.5ln(2x-1)) and substitute 2x-1 for u. so u=2x-1 and y=0.5lnu Now dy/du=1/2u and du/dx=2. to find dy/dx, times these 2 together - giving dy/dx=2/2u = 1/u = 1/2x-1 Doing the same method for the second term gives you that d/dx of 0.5ln(2x+1)is dy/dx= 1/2x+1 Therfore by subbing these back into the orignial equation,l the derivative of the enitre equation becomes dy/dx = (1/[2x-1])-(1/[2x+1])

SF
Answered by Sam F. Maths tutor

10641 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5


How do you prove by contradiction the irrationality of surds. Use sqrt 2 as an example.


Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning