Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)

y=ln([2x-1/2x=1]^1/2)- can be written as y= [0.5ln(2x-1)]-[0.5ln(2x+1)] due to laws of logs. Take first term -- (0.5ln(2x-1)) and substitute 2x-1 for u. so u=2x-1 and y=0.5lnu Now dy/du=1/2u and du/dx=2. to find dy/dx, times these 2 together - giving dy/dx=2/2u = 1/u = 1/2x-1 Doing the same method for the second term gives you that d/dx of 0.5ln(2x+1)is dy/dx= 1/2x+1 Therfore by subbing these back into the orignial equation,l the derivative of the enitre equation becomes dy/dx = (1/[2x-1])-(1/[2x+1])

Answered by Sam F. Maths tutor

9854 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I use the normal distribution table to find probabilities other than P(z<Z)?


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)


How would we evaluate (1/3)^-3/2 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences