Describe and explain the motion of a skydiver from leaving the aircraft to reaching terminal velocity

Initially, there is only one force acting on the skydiver, which is their weight. F=ma therefore mg=ma. The m's cancel and the skydiver falls with acceleration g. However as soon as they have a downwards velocity, drag acts upwards to oppose this motion. As the velocity increases, the drag increases and therefore the force acting downwards on the skydiver decreases. This continues until the drag force is equal to the weight of the skydiver. At this point there is no net force on the skydiver and since F=ma, this means that there is no acceleration and the skydiver is in freefall and has reached their terminal velocity

Answered by Ollie F. Physics tutor

5385 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.


Can you talk me through how to solve problems on projectiles? I always get confused


What is the photoelectric effect?


3 resistors, R1, R2 and R3 are attached in parallel across a 6V cell with resistances 3, 4 and 5 Ohms respectively. Calculate the current across each resistor.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences