Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process

Newton-Raphson is used for finding a numerical solution to equations of the form f(x)=0. The question asks for the square root of 3, which algebraically looks like this: x = sqrt(3) This can be rewritten in the form f(x)=0, giving: x^2 - 3 = 0 (Note that in doing this you also create the negative solution by squaring it but this can be ignored in this question) You can now calculate the Newton function for f(x), which is: xn+1 = xn - (xn^2 - 3)/(2xn) Now choose a sensible x0, 1.5 is a good place to start as you know the answer will be in (1,2) as 1^2 = 1 and 2^2 = 4 So now you just apply the iteration until the first four decimal places do not change: x0 = 1.5 x1 = 1.75 x2 = 1.73214... x3 = 1.73205... x4 = 1.73205... So after 4 iterations the first 4 decimal places do not change. So the answer is 1.7321

Related Further Mathematics A Level answers

All answers ▸

Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


Find the modulus-argument form of the complex number z=(5√ 3 - 5i)


Solve the following, giving your answers in terms of ln a: 7 sechx - tanhx =5


Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences