Why is 2-trichloroethanoic acid such a strong acid?

Cl is very electronegative, which makes it electron withdrawing. This means the three Cl substituents pull electrons from the O-H bond. This causes further polarisation of the O-H bond, which means there is a strong tendency for the H+ to be lost from the molecule. Furthermore, the Cl groups then can pull electron density from the negative O-, which will stabilise the ion. I.e. the negative charge experiences some delocalisation. This means there is a decreased likelihood the ion will just reattach to a lost proton (H+), causing there to be a large concentration of H+ within the solution. This gives the lower pH.

LS
Answered by Lucy S. Chemistry tutor

3209 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Identify which 2 of the following processes involve an exothermic change: melting, boiling, freezing, deposition and sublimation


Explain why alkenes can have stereoisomers


Explain the trend in first ionisation energies across a period.


How does temperature affect the position of equilibrium if the reaction is exothermic?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning