Solve the simultaneous equations: 3x+2y=4 and 2x+y=3

When solving simultaneous equations there are several options, the two most common methods being substitution and elimination. For this example I shall use elimination. In order to do so, either x or y must have the same coefficient in both equations. The simplest way of doing so is to multiply the second equation by 2 in order that the coefficient of y in both equations is 2. This gives us 4x+2y=6. We can then subtract the second equation from the first to eliminate y as a variable. This leaves -x=-2 or more simply put, x=2. We then substitute x=2 into either equation to solve for y. If we use the first we get: 3(2)+2y=4 or 6+2y=4. To simplify this, we take 6 over to the right side and subtract it from 4 (since signs become the opposite when taken over the equals sign). We are left with: 2y=-2. We divide both sides by 2 and are left with y=-1.

Answered by Catherine G. Maths tutor

11244 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

factorise 2x^2 - x - 6


Northern Bank has two types of account. Both accounts pay compound interest. Cash savings account: Interest 2.5% per annum Shares account: Interest 3.5% per annum Ali invests £2000 in the cash savings account. Ben invests £1600 in the shares account.


The new reading for James' electricity bill is 7580, and the old reading is 7510, the price per unit is 13p, how much does James have to pay for his electricity?


Given 924*438 = 404712, what is 9.24*43.8


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences