Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.

In order to find turning points, we differentiate the function. Hence we get f'(x)=2x + 4. Setting f'(x)=0 we get x = -2 and inputting this into f(x) we get y = 0 therefore the turning point is (-2,0). To find out wether this is a min or max we find f''(x) which is 2. Since 2>0 we know that this is a minimum point.

BA
Answered by Basim A. Maths tutor

12500 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


What is the coefficient of x^2 in the expansion of (5+2x)^0.5?


Integrate y=x^2 between the limits x=3 and x=1


The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences