Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.

In order to find turning points, we differentiate the function. Hence we get f'(x)=2x + 4. Setting f'(x)=0 we get x = -2 and inputting this into f(x) we get y = 0 therefore the turning point is (-2,0). To find out wether this is a min or max we find f''(x) which is 2. Since 2>0 we know that this is a minimum point.

Answered by Basim A. Maths tutor

11911 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find 1 + (1 + (1 + (1 + (1 + ...)^-1)^-1)^-1)^-1


what is the equation of the normal line to the curve y=x^2-4x+3 at the point (5,8)?


How do you go about differentiating a^x functions?


Find the turning point(s) of the following function f(x) = x^2-2x+4. Determine whether the turning point is a minimum or maximum.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences