Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.

In order to find turning points, we differentiate the function. Hence we get f'(x)=2x + 4. Setting f'(x)=0 we get x = -2 and inputting this into f(x) we get y = 0 therefore the turning point is (-2,0). To find out wether this is a min or max we find f''(x) which is 2. Since 2>0 we know that this is a minimum point.

Answered by Basim A. Maths tutor

12094 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a stable solution and what is dominance?


Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).


A particle, P, moves along the x-axis. At time t seconds, t > 0, the displacement, is given by x=1/2t^2(t ^2−2t+1).


How do I sketch a polynomial function?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences