By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0

x^4 -8x^2 +15 = 0, we rewrite the equation in square form as (x^2-4)^2 -16 +15 =0 (x^2 -4)^2 = 1 x^2 -4 = ±1 so x^2 = 4±1, (x^2 = 3 or x^2 = 5) Therefore x = {-√3, √3, -√5, √5)

Answered by Callum S. Maths tutor

2798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y(x)=x^2 + 2x + 1, find the turning point and classify it as minimum or maximum.


Differentiate a^x


What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


Supposing y = arcsin(x), find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences