By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0

x^4 -8x^2 +15 = 0, we rewrite the equation in square form as (x^2-4)^2 -16 +15 =0 (x^2 -4)^2 = 1 x^2 -4 = ±1 so x^2 = 4±1, (x^2 = 3 or x^2 = 5) Therefore x = {-√3, √3, -√5, √5)

CS
Answered by Callum S. Maths tutor

3272 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use the chain rule for differentiation?


Evaluate the indefinite integral: ∫ (e^x)sin(x) dx


Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning