By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0

x^4 -8x^2 +15 = 0, we rewrite the equation in square form as (x^2-4)^2 -16 +15 =0 (x^2 -4)^2 = 1 x^2 -4 = ±1 so x^2 = 4±1, (x^2 = 3 or x^2 = 5) Therefore x = {-√3, √3, -√5, √5)

CS
Answered by Callum S. Maths tutor

3191 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?


A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


Find the sum of the first n odd numbers, 1+ 3 + … + 2n-1, in terms of n. What might a mathematician’s thought process be?


Split (3x-4)/(x+2)(x-3) into partial fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning