How to integrate ln(x)

How to integrate ln(x)?

In order to integrate log x of base e, we are going to apply integration by parts.

Recall that the formula for integration by parts is:

  /                                  /

 | f(x) g'(x) = f(x) g(x) - | f'(x) g(x)

 /                                 /

The application of integration by parts is interesting because there is only one function being integrated. We need an f and g'. The key step in this problem is we can manufacture a function by making

ln(x) = 1 * ln (x)

We can choose f(x) = ln (x) , g'(x) = 1 ==>>>> f'(x) = 1/x, g(x) = x

Then,

 /            /                                  /                                    /

 | ln(x) = | 1ln(x) dx = xln(x) - | x * (1/x) dx = x*ln(x) - | 1 dx 

/            /                                  /                                    /

 

    = x*ln(x) - x + C

 

Answered by Zaiyang L. Maths tutor

12847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


solve sin(2x)=0.5. between 0<x<2pi


Find the equation of the straight line perpendicular to 3x+5y+6=0 that passes through (3,4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences