How to integrate ln(x)

How to integrate ln(x)?

In order to integrate log x of base e, we are going to apply integration by parts.

Recall that the formula for integration by parts is:

  /                                  /

 | f(x) g'(x) = f(x) g(x) - | f'(x) g(x)

 /                                 /

The application of integration by parts is interesting because there is only one function being integrated. We need an f and g'. The key step in this problem is we can manufacture a function by making

ln(x) = 1 * ln (x)

We can choose f(x) = ln (x) , g'(x) = 1 ==>>>> f'(x) = 1/x, g(x) = x

Then,

 /            /                                  /                                    /

 | ln(x) = | 1ln(x) dx = xln(x) - | x * (1/x) dx = x*ln(x) - | 1 dx 

/            /                                  /                                    /

 

    = x*ln(x) - x + C

 

Answered by Zaiyang L. Maths tutor

13684 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following function: f(x) = 8x^3 + 1/x + 5


Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


Showing all your working, evaluate ∫ (21x^6 - e^2x- (1/x) +6)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences