How to integrate ln(x)

How to integrate ln(x)?

In order to integrate log x of base e, we are going to apply integration by parts.

Recall that the formula for integration by parts is:

  /                                  /

 | f(x) g'(x) = f(x) g(x) - | f'(x) g(x)

 /                                 /

The application of integration by parts is interesting because there is only one function being integrated. We need an f and g'. The key step in this problem is we can manufacture a function by making

ln(x) = 1 * ln (x)

We can choose f(x) = ln (x) , g'(x) = 1 ==>>>> f'(x) = 1/x, g(x) = x

Then,

 /            /                                  /                                    /

 | ln(x) = | 1ln(x) dx = xln(x) - | x * (1/x) dx = x*ln(x) - | 1 dx 

/            /                                  /                                    /

 

    = x*ln(x) - x + C

 

ZL
Answered by Zaiyang L. Maths tutor

14509 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


Integral of sin^2(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning