How do you find the possible values of cos(x) from 5cos^2(x) - cos(x) = sin^2(x)?

First, you start by replacing sin^2(x) with 1-cos^2(x) as you want the equation to be in terms of cos(x) and you know sin^2(x)+cos^2(x) = 1. Then you rearrange the equation to get 0 on one side so that you can solve it. This gives 6cos^2(x) - cos(x) - 1 = 0. Then you can factorise this equation to give (2cos(x)-1)(3cos(x) + 1) = 0. Therefore, you'd get solutions when either 2cos(x) - 1 = 0 or when 3cos(x) + 1 = 0. You can rearrange these to find that cos(x) = 1/2 or -1/3.

Answered by Gowri K. Maths tutor

3808 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


How do I intregrate ln(x)?


A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.


Solve the following simultaneous equations y + 4x + 1 = 0, y^2 + 5x^2 + 2x = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences