How do you find the gradient of a line at a certain point when f(x) is in the form of a fraction, where both the numerator and denominator are functions of x?

Take the example f(x)=(2x^2+1)/(3x+5) , where we're finding the gradient at x=0. First, you need to differentiate f(x) to get f'(x). Because f(x) is a fraction where both the numerator and denominator are functions of x, we use the quotient rule. This gives us f'(x)=((3x+5)(4x)-(2x^2+1)(3))/(3x+5)^2 Now, we plug in the value of x, since f'(x) gives us the gradient. So f'(0)=((30+5)(40)-(20^2+1)(3))/(30+5)^2 f'(0)=-3/25 This means the gradient of f(x) at x=0 is -3/25

PE
Answered by Phoebe E. Maths tutor

6431 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


Find the area under the curve y=xsin(x), between the limits x=-pi/2 and x=pi/2.


Prove n^3 - n is a multiple of 3


Differentiate 7(3x^2+7)^(1/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning