What is the chain rule? when do I have to use it?

The chain rule is the technique used for differentiation when the equation you're trying to differentiate contains a function of a function. Consider ln(x). You should know this differentiates to 1/x. If however we had to differentiate ln(3x) you may intuitively guess that this would differentiate to 1/3x. Using the chain rule we can see this is not the case. So, we have y = ln(3x). We want to find dy/dx. We know this can be treated as a fraction, and split it into dy/du du/dx. Now if we substitute u = 3x, y = ln(u), so dy/du = 1/u, du/dx = 3, so dy/dudu/dx = 3/u. Resubstitute u = 3x, and you get dy/dx = 3/3x = 1/x.

AR
Answered by Alex R. Maths tutor

5008 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2


Integrate x((x^2)+2) dx


You're on a game show and have a choice of three boxes, in one box is £10, 000 in the other two are nothing. You pick one box, the host then opens one of the other boxes showing it's empty, should you stick or switch?


Differentiate (3x^2-5x)/(4x^3+2x^2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning