What is the chain rule? when do I have to use it?

The chain rule is the technique used for differentiation when the equation you're trying to differentiate contains a function of a function. Consider ln(x). You should know this differentiates to 1/x. If however we had to differentiate ln(3x) you may intuitively guess that this would differentiate to 1/3x. Using the chain rule we can see this is not the case. So, we have y = ln(3x). We want to find dy/dx. We know this can be treated as a fraction, and split it into dy/du du/dx. Now if we substitute u = 3x, y = ln(u), so dy/du = 1/u, du/dx = 3, so dy/dudu/dx = 3/u. Resubstitute u = 3x, and you get dy/dx = 3/3x = 1/x.

AR
Answered by Alex R. Maths tutor

4436 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the solutions to z^2 = i


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


Differentiate x^2 from first principles


y = 4x^3 - 5/x^2 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences