What is the chain rule? when do I have to use it?

The chain rule is the technique used for differentiation when the equation you're trying to differentiate contains a function of a function. Consider ln(x). You should know this differentiates to 1/x. If however we had to differentiate ln(3x) you may intuitively guess that this would differentiate to 1/3x. Using the chain rule we can see this is not the case. So, we have y = ln(3x). We want to find dy/dx. We know this can be treated as a fraction, and split it into dy/du du/dx. Now if we substitute u = 3x, y = ln(u), so dy/du = 1/u, du/dx = 3, so dy/dudu/dx = 3/u. Resubstitute u = 3x, and you get dy/dx = 3/3x = 1/x.

Answered by Alex R. Maths tutor

4255 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What does differentiation actually mean?


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


Find the values of x for which f(x) is an increasing function given that f(x)=8x-2x^2


proof for the derivative of sin(x) is cos(x) (5 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences