b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)

If I were to get the job, I would get a writing board to help explain this. But to approach this question, it's a good idea to draw the graph. You know that the tangent line is a straight line and as the x and y axes are perpendicular, you will be trying to find the area of a right angled triangle. You will need to use the equation of the tangent line from P in part a to find the coordinates at Q and R and as you are only looking for the area of the triangle you can choose Q and R to be whichever way round you like. A thing to look out for is to make sure that the distances are both positive to avoid calculating a negative area! Also remember that e is not a variable, it's a constant at around 2.7. Once you have these coordinates, you can calculate the area of this triangle by using the formula 1/2bh which is the general formula for the area of a triangle. In the tutorial I will explain this with numbers and answer any questions as we go.

Answered by Sophie H. Maths tutor

4266 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y= arcos(x). Find dy/dx in terms of x.


What is a derivative and how are they used?


Solve the equation |3x +4a| = 5a where a is a positive constant.


How would you determine what sort of stationary point this curve has? x^3 - 6x^2 + 9x - 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences