Find values of x which satisfy the inequality: x^2-4x-2<10

We first apply a simple addition to make the inequality 0 on one side. We subtract 10, giving x^2-4x-12<0. Now we factorise the equation in x, intuitively or using the quadratic formula: x=(-b+sqrt(b^2-4ac))/2a or X==(-b-sqrt(b^2-4ac))/2a to give 2 values for x. In this case we can use intuition to get (X-6)(X+2)<0. We draw a graph of the function and deduce which values of X satisfy the inequality. Here, if -2 < x < 6 the inequality is satisfied.

RK
Answered by Robert K. Further Mathematics tutor

4401 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4metres. Calculate the maximum speed of the particle.


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


Solve (z-i)+(z+i)+(z-1)+(z-1)


How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning