Find values of x which satisfy the inequality: x^2-4x-2<10

We first apply a simple addition to make the inequality 0 on one side. We subtract 10, giving x^2-4x-12<0. Now we factorise the equation in x, intuitively or using the quadratic formula: x=(-b+sqrt(b^2-4ac))/2a or X==(-b-sqrt(b^2-4ac))/2a to give 2 values for x. In this case we can use intuition to get (X-6)(X+2)<0. We draw a graph of the function and deduce which values of X satisfy the inequality. Here, if -2 < x < 6 the inequality is satisfied.

RK
Answered by Robert K. Further Mathematics tutor

4275 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Differentiate: y=x^x


Find the square root of complex number 3 + 4i


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Further Maths: How do you find the inverse of a 2 x 2 matrix?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning