Find values of x which satisfy the inequality: x^2-4x-2<10

We first apply a simple addition to make the inequality 0 on one side. We subtract 10, giving x^2-4x-12<0. Now we factorise the equation in x, intuitively or using the quadratic formula: x=(-b+sqrt(b^2-4ac))/2a or X==(-b-sqrt(b^2-4ac))/2a to give 2 values for x. In this case we can use intuition to get (X-6)(X+2)<0. We draw a graph of the function and deduce which values of X satisfy the inequality. Here, if -2 < x < 6 the inequality is satisfied.

Related Further Mathematics A Level answers

All answers ▸

Simplify (2x^3+8x^2+17x+18)/(x+2)


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences