Find values of x which satisfy the inequality: x^2-4x-2<10

We first apply a simple addition to make the inequality 0 on one side. We subtract 10, giving x^2-4x-12<0. Now we factorise the equation in x, intuitively or using the quadratic formula: x=(-b+sqrt(b^2-4ac))/2a or X==(-b-sqrt(b^2-4ac))/2a to give 2 values for x. In this case we can use intuition to get (X-6)(X+2)<0. We draw a graph of the function and deduce which values of X satisfy the inequality. Here, if -2 < x < 6 the inequality is satisfied.

RK
Answered by Robert K. Further Mathematics tutor

4565 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


Whats the derivative of sin(3x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning