Find values of x which satisfy the inequality: x^2-4x-2<10

We first apply a simple addition to make the inequality 0 on one side. We subtract 10, giving x^2-4x-12<0. Now we factorise the equation in x, intuitively or using the quadratic formula: x=(-b+sqrt(b^2-4ac))/2a or X==(-b-sqrt(b^2-4ac))/2a to give 2 values for x. In this case we can use intuition to get (X-6)(X+2)<0. We draw a graph of the function and deduce which values of X satisfy the inequality. Here, if -2 < x < 6 the inequality is satisfied.

RK
Answered by Robert K. Further Mathematics tutor

3938 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A curve has the equation (5-4x)/(1+x)


Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


What are the conditions required for the poisson distribution?


How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences