FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)

Let the 2x2 matrix= A. Using the characteristic equation for A (det(A-λI)=0), find the determinant of the matrix (2-λ,1) and (3,-λ). This results in the quadratic λ^2-2λ-3 so λ=3,-1. From the definition of the eigenvector,v, Av=λv. Let v be the column vector (x,y), and for λ=-1 we get the simultaneous equations 2x+3y=x and x=-y, which results in the eigenvector (1,-1).

BM
Answered by Ben M. Further Mathematics tutor

3029 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


Find the integral of f(x)= x^3 + 2x^2 + 1


write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning