FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)

Let the 2x2 matrix= A. Using the characteristic equation for A (det(A-λI)=0), find the determinant of the matrix (2-λ,1) and (3,-λ). This results in the quadratic λ^2-2λ-3 so λ=3,-1. From the definition of the eigenvector,v, Av=λv. Let v be the column vector (x,y), and for λ=-1 we get the simultaneous equations 2x+3y=x and x=-y, which results in the eigenvector (1,-1).

Related Further Mathematics A Level answers

All answers ▸

I don't understand how proof by mathematical induction works, can you help?


Give the general solution to the Ordinary Differential Equation: (dy/dx) + 2y/x = 3x+2


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Find the modulus-argument form of the complex number z=(5√ 3 - 5i)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences