Find the values of x where x+3>2/(x-4), what about x+3>2/mod(x-4)?

a) Create an inequality in x: (x+3)(x-4)<2. Expand and find the critical points, x^2-x-14>0. Find the answers to this inequality using quadratic formula and then test for a value between your two critical points x0=(1+sqrt(57))/2 and x1=(1-sqrt(57))/2. Also as x-4=0 at x=4 we need to consider the asympotote at x=4. As 0 in the original equation satisfies the inequality, use x=0 as a test as it is between the two cvs we can conclude that to satisfy the inequality, x1<x4. b)if for x+3>2mod(x-4) the equation is the same for x>4. For x<4 then we need to compare with (x+3)>-2/(x-4), Therefore expand to get x^2 -x-10<0. The roots of this equation are x=(1+-sqrt(41))/2. Then compare with x=0 again and find that x>4, (1+sqrt(41))/2>x>(1-sqrt(41))/2

BH
Answered by Benjamin H. Further Mathematics tutor

2064 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

y = artanh(x/sqrt(1+x^2)) , find dy/dx


What is the value of x from (x+2)^2=4


Given z=cosx+isinx, show cosx=1/2(z+1/z)


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences