How do you find the general solution of a second order differential equation?

Steps:

  1. Use the auxiliary equation on the equation given in the question
  2. Solve the resulting equation
  3. Identify the appropriate complementary function from the solutions
  4. Determine an appropriate particular integral
  5. Differentiate this equation twice
  6. Sub in the particular integral and its differentials to the original equation in order to find the value of the constants in the particular integral
  7. Find general solution by adding the complementary function and particular integral
  8. Check!

Related Further Mathematics A Level answers

All answers ▸

How can we solve a limit having an indetermination of the type 0/0 or infinity divided by infinity?


How do you find the matrix corresponding to a transformation?


What are differential equations, and why are they important?


Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences