How do you find the general solution of a second order differential equation?

Steps:

  1. Use the auxiliary equation on the equation given in the question
  2. Solve the resulting equation
  3. Identify the appropriate complementary function from the solutions
  4. Determine an appropriate particular integral
  5. Differentiate this equation twice
  6. Sub in the particular integral and its differentials to the original equation in order to find the value of the constants in the particular integral
  7. Find general solution by adding the complementary function and particular integral
  8. Check!
OD
Answered by Oliver D. Further Mathematics tutor

2485 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x


Differentiate arctan(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences