Is F=ma Newton's 2nd Laws of Motion?

That is a good question. F=ma is a special case of Newton's 2nd Law of Motion . Newton's second law states that: The rate of change of linear momentum is proportional to the applied force and acts in the same direction as the force. Newton's 2nd Law implies F=ma only if the mass of the change of momentum stays constant. Here I will write how you can get F=ma from the second law if the mass stays the same.

Final momentum: P_f=m_f x v_f , m_f is final mass, v_f is final velocity

Initial momentum: P_i=m_i x v_i , m_i is the initial mass, v_i is the initial velocity

now F is proportional to the rate of change of momentum.

F=k x (P_f - P_i)/t

F= k x ( m_f x v_f - m_i x v_i)/t

We know the mass stays the same so m_f=m_i

F= k x ( m_i x v_f - m_i x v_i)/t

Factorise m_i out

F= k x m_i x(v_f - v_i)/t

write m_i =m to make it look nicer

F= k x m x(v_f - v_i)/t

we know v_f = v_i + at from our SUVAT equations so

a = (v_f - v_i)/t by rearranging the equations

Plug this in the equation then we get

F=ma

Answered by Mohsin Z. Physics tutor

12391 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain quantitatively how an object can follow circular motion whilst on a ramp with no friction in the radial direction.


Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units


Describe and explain the photoelectric effect in terms of photons interacting with the surface of a metal.


A cylindrical specimen of material with diameter 1.5x10^-4 has a breaking stress of 1.3GPa. Calculate the tensile force acting on the specimen at breaking point.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences