Find the exact value of sin(75°). Give your answer in its simplest form.

sin(A+B) ≡ sin(A)cos(B) + sin(B)cos(A)

⇒ sin(75°) = sin(30+45)° = sin(30°)cos(45°) + sin(45°)cos(30°)

= ½ × 1/√2 + 1/√2 ×(√3)/2 = 1/(2√2) + (√3)/(2√2)

= (1+√3)/(2√2)

Answered by Leigh M. Maths tutor

101850 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x)=x^2 and g(x)=5x-11, then what is fgg(x) when x=3?


Integrate the following function: f(x) = ln(x)


What is the difference between mutually exclusive and indepedent events?


What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences