Find the exact value of sin(75°). Give your answer in its simplest form.

sin(A+B) ≡ sin(A)cos(B) + sin(B)cos(A)

⇒ sin(75°) = sin(30+45)° = sin(30°)cos(45°) + sin(45°)cos(30°)

= ½ × 1/√2 + 1/√2 ×(√3)/2 = 1/(2√2) + (√3)/(2√2)

= (1+√3)/(2√2)

Answered by Leigh M. Maths tutor

102497 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


What are the first 4 non-zero terms in the binomial expansion of (2+3x)^6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences