Find the exact value of sin(75°). Give your answer in its simplest form.

sin(A+B) ≡ sin(A)cos(B) + sin(B)cos(A)

⇒ sin(75°) = sin(30+45)° = sin(30°)cos(45°) + sin(45°)cos(30°)

= ½ × 1/√2 + 1/√2 ×(√3)/2 = 1/(2√2) + (√3)/(2√2)

= (1+√3)/(2√2)

Answered by Leigh M. Maths tutor

101631 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does one find the area of a generic triangle?


What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


A curve has equation y = 20x - x^2 - 2x^3 . The curve has a stationary point at the point M where x = −2. Find the x- coordinate of the other stationary point of the curve


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences