Find the exact value of sin(75°). Give your answer in its simplest form.

sin(A+B) ≡ sin(A)cos(B) + sin(B)cos(A)

⇒ sin(75°) = sin(30+45)° = sin(30°)cos(45°) + sin(45°)cos(30°)

= ½ × 1/√2 + 1/√2 ×(√3)/2 = 1/(2√2) + (√3)/(2√2)

= (1+√3)/(2√2)

LM
Answered by Leigh M. Maths tutor

104146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A level Maths question - The graph of y=2sin(2x)+1 is rotated 360 degrees about the x-axis to form a solid. Find the volume enclosed by the curve, the co-ordinate axes and the line x=pi/2


Differentiate the function f(x) = x^2 * e^2x with respect to x


Evaluate the integral ∫(sin3x)(cos3x)dx (C4 Integration)


Factorise x^3+3x^2-x-3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning