Find the exact value of sin(75°). Give your answer in its simplest form.

sin(A+B) ≡ sin(A)cos(B) + sin(B)cos(A)

⇒ sin(75°) = sin(30+45)° = sin(30°)cos(45°) + sin(45°)cos(30°)

= ½ × 1/√2 + 1/√2 ×(√3)/2 = 1/(2√2) + (√3)/(2√2)

= (1+√3)/(2√2)

Answered by Leigh M. Maths tutor

102484 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has the equation x^3 + 2xy- x - y^3 -20 = 0. Find dy/dx in terms of x and y.


Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


How do you know if a stationary point on a curve is a maximum or minimum without plotting the graph?


A child of m1=48 kg, is initially standing at rest on a skateboard. The child jumps off the skateboard moving horizontally with a speed v1=1.2 ms^-1. The skateboard moves with a speed v2=16 ms^-1 in the opposite direction. Find the mass of the skateboard.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences