Sketch, on a pair of axes, the curve with equation y = 6 - |3x+4| , indicating the coordinates where the curve crosses the axes, then solve the equation x = 6 - |3x+4|

One helpful method for solving questions like these is to sketch the curve in stages. First begin with the straight line y=3x+4 (taking 3x+4 from within the modulus lines) crossing the x axis at -4/3 and the y axis at 4. Next, move on to y=|3x+4|. This should look the same at all points to the right of the x intercept/above the x axis - however, all points to the left of x=-4/3 should now have been reflected in the x axis, creating a V shaped curve. Now, move on to y=-|3x+4|. This should be the previous curve, reflected in the x axis - upside down, with the point of the (now upside down) V still at x=-4/3. Finally, we consider y=6-|3x+4|. The entirety of the upside down V from the previous curve should now be 6 higher on the y axis. We can find the new x-intercepts by solving 0=6 +/- (3x+4), which gives us the upside down V shape with x-intercepts x=-10/3 and x=2/3, y-intercept at y=2, and the point of the V at (-4/3,6).

To solve x=6-|3x+4|, solve the equations x=6-(3x+4) and x=6--(3x+4). The first gives us x=6-3x-4=2-3x, which rearranges to 4x=2, and so x=1/2. The second gives us x=6+3x+4=10+3x, which rearranges to -2x=10, and so x=-10/2=-5.

WS
Answered by Wesley S. Maths tutor

4465 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


Integrate x*sin(x) with respect to x.


How do you calculate the angle between two vectors?


Find the inverse of the function g(x)=(4+3x)/(5-x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning