using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2

First we calculate du/dx = -2x and rearrange to get dx as the subject, dx=du/(-2x). Now we change the limits of integration because we are now integrating with respect to u. So the bottom limit will be u(1) = 6-1^2=5 and the top will be u(2) = 6- 2^2 = 2. Now subbing these into the integral we get ∫ -x^2/(2(6-x^2)^1/2) du between 5 and 2 then sub in u to attain ∫ (u-6)/(2u^1/2) du = ∫ (1/2)(u^1/2 - 6u^-1/2)du = [(1/3)u^3/2 -6u^1/2]between 5 and 2 so the integral equals -16/3(2)^1/2 -(5/3(5^1/2)-6(5^1/2)) = 13/3(5^1/2) - 16/3(2^1/2).

DB
Answered by Daniel B. Maths tutor

4836 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=3x^3+x^2+5 at the point (1,9)


Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.


Find the value of x if the following is true: 3(x – 2) < 8 – 2x


How can I try and solve this differentiation, I don`t understand it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning