using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2

First we calculate du/dx = -2x and rearrange to get dx as the subject, dx=du/(-2x). Now we change the limits of integration because we are now integrating with respect to u. So the bottom limit will be u(1) = 6-1^2=5 and the top will be u(2) = 6- 2^2 = 2. Now subbing these into the integral we get ∫ -x^2/(2(6-x^2)^1/2) du between 5 and 2 then sub in u to attain ∫ (u-6)/(2u^1/2) du = ∫ (1/2)(u^1/2 - 6u^-1/2)du = [(1/3)u^3/2 -6u^1/2]between 5 and 2 so the integral equals -16/3(2)^1/2 -(5/3(5^1/2)-6(5^1/2)) = 13/3(5^1/2) - 16/3(2^1/2).

DB
Answered by Daniel B. Maths tutor

5131 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two particles A and B of mass 2kg and 3kg respectively are moving head on. A is moving at 5m/s and B is moving at 4m/s. After the collision, A rebounds at 4m/s. What is the speed of B and what direction is it moving in?


How to write an algebraic fraction in a given form e.g. (3+13x-6x^2)/(2x-3) as Ax + B + C/(2x-3) where A, B and C are natural numbers


Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)


The function f is defined by f(x)= 2/(x-3) + x - 6 . Determine the coordinates of the points where the graph of f intersects the coordinate axes.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning