How can I calculate the maximum value of the compound angle formulae Rsin(x+a) and Rcos(x+a)?

Often, the compound angle formulae can seem quite offputting, especially since exam pressures can mean the random "R" at the front of an angle addition formulae appears confusing. However, finding the maximum (or minimum) for these formulae is relatively straightforward. If we let x+a=t, then we have Rsin(t) and Rcos(t). Thinking about the graphs for sine and cosine, we know that the maximum value that we can get on the y-axis is 1, so the maximum of sin(t) and cos(t) will be 1 (and the minimum will be -1). So, to get the maximum and minimum values, all we have to do is multiply by R. Hence, the maximum value of Rsin(x+a) will be R, and similarly for Rcos(x+a) the maximum value will be R.

Answered by Luke B. Maths tutor

12051 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


How do I find the maximum/minimum of a curve?


Via the product rule, or otherwise, differentiate 'y = xsin(x)'.


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences