How can I calculate the maximum value of the compound angle formulae Rsin(x+a) and Rcos(x+a)?

Often, the compound angle formulae can seem quite offputting, especially since exam pressures can mean the random "R" at the front of an angle addition formulae appears confusing. However, finding the maximum (or minimum) for these formulae is relatively straightforward. If we let x+a=t, then we have Rsin(t) and Rcos(t). Thinking about the graphs for sine and cosine, we know that the maximum value that we can get on the y-axis is 1, so the maximum of sin(t) and cos(t) will be 1 (and the minimum will be -1). So, to get the maximum and minimum values, all we have to do is multiply by R. Hence, the maximum value of Rsin(x+a) will be R, and similarly for Rcos(x+a) the maximum value will be R.

Answered by Luke B. Maths tutor

12951 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Particle A mass 0.4kg and B 0.3kg. They move in opposite direction and collide. Before collision, A had speed 6m/s and B had 2m/s. After collision B had 3m/s and moved in opposite direction. Find speed of A after collision with direction and Impulse on B.


When given an equation in parametric form, how can you figure out dy/dx?


Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences