why is sin(x) squared plus cos(x) squared 1?

Thinking of sine and cosine as ratios of side lengths in a right angled triangle, sin(x) = o/h and cos(x) = a/h, so the sin(x)^2 + cos(x)^2 becomes (o^2 + a^2)/h^2. By Pyhtagoras, o^2 + a^2 = h^2, so we get h^2/h^2 = 1.

sin/cos = tan is derived similarly, sin/cos = (o/h)/(a/h) = o/a = tan

Answered by Matthew S. Maths tutor

17007 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).


Express (3-5x)/(x+3)^2 in the form A/(x+3) + B/(x+3)^2


How to do Integration by Parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences