Factorise x^3+3x^2-x-3

Test factors of -3 to find a root for the equation. For example, try 1, 1^3+3*1^2-1-3=0, so 1 is a root, and (x-1) is a factor. Now it's known that: (ax^2+bx+c)(x-1)=x^3+3x^2-x-3. By comparing coefficients for x^3 term, a=1, and for x^0 term, c=3. Then for the x term, c-b=-1, so b=4. Therefore the original equation equals (x^2+4x+3)(x-1). Now factorise the quadratic to give (x+3)(x+1)(x-1). Expanding the bracket again can be used to check your answer.

Answered by Sian C. Maths tutor

6242 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

"Why is Mathematics important, I wont use any of it when I start work?"


Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.


Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences