How to differentiate a function?

Let's look at the function y = 3x^2 + 6x + 3. Differentiating it gives us the derivative of y: dy/dx = 6x + 6. The original function has three terms. Let's look at each term:

  1. 3x^2 (^2 means to the power of 2). This becomes 6x, because we take the index 2, multiply it by the coefficient 3, and subtract 1 from the index.
  2. 6x becomes 6, because we again multiply the index by the coefficient and subtract one from the index. This gives us 6x^0, but anything to the power of 0 equals 1, so we are left with just 6.
  3. 3 is removed altogether, because it doesn't have an x attached to it.
Answered by Edmunds S. Maths tutor

7607 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The Diagram shows the Triangle PQR. PQ = x cm. PR = 2x cm. Angle QP^R = 30 degrees. The area of the triangle PQR = A cm^2. Show that x = (Squared Root){2A


A right-angle triangle has a hypotenuse of 8cm and an angle of 30 degrees. What is the opposite's length?


What is the difference between distance and displacement?


Make a the subject of the formula f=(a+1)/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences