How to differentiate a function?

Let's look at the function y = 3x^2 + 6x + 3. Differentiating it gives us the derivative of y: dy/dx = 6x + 6. The original function has three terms. Let's look at each term:

  1. 3x^2 (^2 means to the power of 2). This becomes 6x, because we take the index 2, multiply it by the coefficient 3, and subtract 1 from the index.
  2. 6x becomes 6, because we again multiply the index by the coefficient and subtract one from the index. This gives us 6x^0, but anything to the power of 0 equals 1, so we are left with just 6.
  3. 3 is removed altogether, because it doesn't have an x attached to it.
Answered by Edmunds S. Maths tutor

7724 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the two points of intersection of the graphs y=x2 and y=x+2.


Area of a shaded trapezium within a rectangle involving algebra.


Sketch the graph of y= (x^2) -2x -3 labelling the turning points and points of intersection


Solve the Simultaneous equation: 6x+3y=13, 14x-9y=9?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences