How do I solve x^2 + x - 6 > 0 ?

This thing we have to solve is an inequality and the solution we are looking for is an entire range of real number, something like "every x between 1 and 2", for example. To do this we need to build a sign diagram and to build a sign diagram we need to find the root of the respective equation first. This is because the roots are when the right hand side (rhs) changes sign. In the intervals between two different roots the sign stay the same. In this case, the roots are x = -3 and x = 2. To compute the sign of the rhs before -3, we can simply compute the results when we substitute any (really, any!) number lower then -3, such as -4. We have: (-4)^2 -4 -6 = 6>0. So, the sign is positive. Same procedure for the (-3,2) interval and (2,infinity). The former gives us a negative sign, the latter a positive one. We want the intervals when the rhs is positive. Therefore the solution is: x<-3 and x>2.

Related Further Mathematics A Level answers

All answers ▸

Evaluate (1 + i)^12


Express the complex number (1+i)/(1-i) in the form x+iy


How do I sketch accurate graphs for rational functions in a short amount of time? (I.e. A step by step guide of sketching graphs)


How can we describe complex numbers ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences