Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2

Make use of identity sech^2(x) = tan^2(x) + 1

=> 2{tan^2(x) + 1} = 3 + tan(x)

Multiply out brackets and rearrange

=> 2tan^2(x) - tan(x) - 1 = 0

Use quadratic formula with a = 2, b = -1, c = -1

=> tan(x) = (1 ± 3) / 4

But for the range of x given, tan(x) must be positive

=> x = arctan(1) = pi/4

Answered by Robert M. Maths tutor

7217 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of the following quadratic equation: x^2 +2x -15 =0


Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).


Explain briefly the Normal Distribution


Find the location and nature of the turning point of the line y=-x^2+3x+2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences