Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2

Make use of identity sech^2(x) = tan^2(x) + 1

=> 2{tan^2(x) + 1} = 3 + tan(x)

Multiply out brackets and rearrange

=> 2tan^2(x) - tan(x) - 1 = 0

Use quadratic formula with a = 2, b = -1, c = -1

=> tan(x) = (1 ± 3) / 4

But for the range of x given, tan(x) must be positive

=> x = arctan(1) = pi/4

Answered by Robert M. Maths tutor

7064 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the equation y=4x^3-9x^2+6x?


A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


Differentiate y=x^2cos(x)


Which equation of motion should I use?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences