f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).

Finding f(x) requires integrating the function f'(x), because f(x) is the integral of the given function f'(x). So {integralsymbol} f'(x) dx = {integralsymbol} (3x^2 - 5cos(3x) + 90) dx = x^3 - (5/3)sin(3x) + 90x +Constant = f(x) Next differentiate f'(x) to get f''(x), because f''(x) is the derivative of f'(x). So f''(x) = d/dx (3x^2 - 5cos(3x) + 90). This is 6x+15sin(x).

CO
Answered by Charles O. Further Mathematics tutor

2425 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


If z=4+i, what is 1/z? (in the form a+bi)


What is differentiation used for?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning