f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).

Finding f(x) requires integrating the function f'(x), because f(x) is the integral of the given function f'(x). So {integralsymbol} f'(x) dx = {integralsymbol} (3x^2 - 5cos(3x) + 90) dx = x^3 - (5/3)sin(3x) + 90x +Constant = f(x) Next differentiate f'(x) to get f''(x), because f''(x) is the derivative of f'(x). So f''(x) = d/dx (3x^2 - 5cos(3x) + 90). This is 6x+15sin(x).

CO
Answered by Charles O. Further Mathematics tutor

2021 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

If z=4+i, what is 1/z? (in the form a+bi)


express z(2+i)=(1+2i)^2 in the form z=x+iy


The equation of a curve is y = x^2 - 5x. Work out dy/dx


Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences