Find the solution of 3^{4x} = 9^{(x-1)/2}.

First, recognise that 3^2 = 9. Recall the rule for multiplying indices, that (a^b)^c = a^{bc}. Then, substitute 3^2 in place of 9 to get 3^{4x} = (3^2)^{(x-1)/2}. Use the rule for multiplying indices, so that the equation is now 3^{4x} = 3^{x-1}. This implies 4x=x-1, and therefore 3x = -1, and finally, x = -1/3 is the solution.

CO
Answered by Charles O. Further Mathematics tutor

1896 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


How do I find the limit as x-->infinity of (4x^2+5)/(x^2-6)?


Given f(x)= 8 − x^2, solve f(3x) = -28


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences