integrate function (x^4+3x)/(x^2) with respect to x

split the integral into (x^4)/(x^2) and (3x)/(x^2) which becomes x^2 and 3*(1/x). These can now be integrated separately and added together after the integration.

first integral: raise the power form 2 to 3, then divide by the new power. This gets (x^3)/3

second integral: remove the 3 from within the integral. realise that 1 is the differential of x. Thereofore 1/x satisfies the condition of f'(x)/f(x). When a function like this is integrated, the answer becomes logarithmic Becoming ln(f(x)) which is ln(x)

therefore the final answer is (x^3)/3+3*ln(x)

CS
Answered by Calum S. Maths tutor

3771 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.


Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d


f(x)=6/x^2+2x i) Find f'(x) ii) Find f"(x)


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning