The amplitude of a simple harmonic oscillator has decreased from 40cm to 38cm. What percentage of energy did the harmonic oscillator lose?

It is recommended to start off by converting all given data into SI units to avoid confusion later on. Write down the total energy of the system and that it is conserved: E(tot)= KE+PE and KE=(mv^2)/2; PE=(kx^2)/2. The potential energy is directly proportional to the amplitude, thus it is easy to estimate the change. As for the kinetic energy, the speed is equal to v=wx and thus, the kinetic energy is KE=(mw^2x^2)/2. Find the relationships between kinectic/potential energies of 40 cm and 38cm amplitudes. For an example: PE1/PE2=(kx1^2)/2 * 2/(kx2^2) = x1^2/x2^2 = 1.108. Later it is found that KE1/KE2=PE1/PE2=1.108. Now with all the components gathered it is possible to find the change in total energy of the system: E2(tot)/ E1(tot) = (KE2+PE2) / (KE1+PE1) = (KE2+PE2)/( 1.108(KE2+PE2)) = 0.9100%=90%. The loss of energy is 100%-90%=10%.

Answered by Ignas V. Physics tutor

2021 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Outline the structure of the alpha and beta particle and give their overall charge and a material which it cannot pass through.


Explain the different types of wave.


Houses lose majority of their energy through the roof and windows. State the three methods of energy transfer. For the roof and windows respectively, describe one adaptation that could be made to improve their efficiency and explain their method.


A coil is connected to a voltmeter. A bar magnet, initially held above the coil, is left to fall into the coil. Explain why the voltmeter shows a reading. How will the reading of the voltmeter be affected if the magnet is dropped from a greater height?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences