The amplitude of a simple harmonic oscillator has decreased from 40cm to 38cm. What percentage of energy did the harmonic oscillator lose?

It is recommended to start off by converting all given data into SI units to avoid confusion later on. Write down the total energy of the system and that it is conserved: E(tot)= KE+PE and KE=(mv^2)/2; PE=(kx^2)/2. The potential energy is directly proportional to the amplitude, thus it is easy to estimate the change. As for the kinetic energy, the speed is equal to v=wx and thus, the kinetic energy is KE=(mw^2x^2)/2. Find the relationships between kinectic/potential energies of 40 cm and 38cm amplitudes. For an example: PE1/PE2=(kx1^2)/2 * 2/(kx2^2) = x1^2/x2^2 = 1.108. Later it is found that KE1/KE2=PE1/PE2=1.108. Now with all the components gathered it is possible to find the change in total energy of the system: E2(tot)/ E1(tot) = (KE2+PE2) / (KE1+PE1) = (KE2+PE2)/( 1.108(KE2+PE2)) = 0.9100%=90%. The loss of energy is 100%-90%=10%.

IV
Answered by Ignas V. Physics tutor

2399 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

If a 30N force is applied to a stationary object of mass 10kg, at what speed will the object accelerate?


An airplane accelerates steadily from rest to 355 m/s, after travelling a distance of 105,000 m. How long, in minutes, does it take the airplane to reach this speed?


In a doppler shift why does a moving source show no increase in speed of the mechanical waves emitted?


Given an ammeter voltmeter a battery and a lamp how will you find the resistance of the lamp?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning