Explain why the enthalpy of lattice dissociation of potassium oxide is less endothermic than that of sodium oxide.

Lattice dissociation enthalpy is the enthalpy change when one mole of a gaseous ionic lattice dissociates into isolated gaseous ions. The process is endothermic because energy is required to overcome the electrostatic attraction between oppositely charged ions. Sodium and potassium ions both have the same charge (+1) but the potassium ion is larger so the electrostatic forces of attraction are weaker in potassium oxide. Hence less energy is required to separate the ions making the enthalpy of lattice dissociation less endothermic.

Answered by Louise J. Chemistry tutor

22796 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is an empirical formula and how do I calculate it?


Bethan prepared some ethoxyethane (line 6) by reacting ethanol with concentrated sulfuric acid. She used 69g of ethanol (Mr=46) and obtained a 45% yield of ethoxyethane (Mr=74). Calculate the mass of ethoxyethane obtained.


Explain Le Chatelier's Principle


An amino acid contains 52.2% carbon, 9.3% hydrogen, 8.7% nitrogen and 29.8% oxygen by mass and has a relative molecular mass of 161 g/mol. What is its molecular formula? What functional groups must it have?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences