Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.

Since Rsin(x+y)=Rsin(x)cos(y)+Rsin(y)cos(x), we can set Rcos(y)=4 (1) and Rsin(y)=3 (2) on comparison to the desired equation. Considering (2) divided by (1) we see that tan(y)=sin(y)/cos(y)=3/4 so y=atan(3/4). Considering (1)^2+(2)^2 we see that R^2=25 so R=5 and we are done.

WV
Answered by William V. Maths tutor

11492 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


Find the integral of (3x^2+4x^5-7)dx


Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.


Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning