Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.

Since Rsin(x+y)=Rsin(x)cos(y)+Rsin(y)cos(x), we can set Rcos(y)=4 (1) and Rsin(y)=3 (2) on comparison to the desired equation. Considering (2) divided by (1) we see that tan(y)=sin(y)/cos(y)=3/4 so y=atan(3/4). Considering (1)^2+(2)^2 we see that R^2=25 so R=5 and we are done.

Answered by William V. Maths tutor

10292 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: (6x + 7)e^x


Where do the graphs of y=3x-2 and y=x^2+4x-8 meet?


How to solve a quadratic equation?


Find the equation of the tangent to the circle x^2 + y^2 + 10x + 2y + 13 = 0 at the point (-3, 2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences