5, 11, 21, 35, 53, ... Find the nth term of this sequence.

By calculating the difference between each of the progressions, we see that the first difference is 6, the next is 10, then 14 and finally 18. It is easy to observe that the jump increases by 4 each time, and so we call this the second difference. Because the second difference is the same this tells us that the nth term will be quadratic and thus include a squared term. Halving the second difference will give us a value of 2 and tells us that the squared term is 2n^2. By putting this into the first term, we get 2(1)^2, which gives us 2. To reach 5 and satisfy the progression, we must add 3. In total, this gives us an nth term of 2n^2 + 3.

MG
Answered by Majed G. Maths tutor

28943 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A bag contains red discs, white discs and blue discs. 1/6 of the discs are red, 1/4 of the discs are blue. What is the smallest possible number of white discs?


A rectangle has a shorter side with a length of x and a longer side with a length of x + 8, the perimeter of the rectangle is 80cm. Calculate the value of x.


a) Find the area of a semi circle with diameter 12cm. b) The area of a semi-circle is 60cm^2. Find the radius of the sem-circle.


The recommended price of a ladder is £75. The ladder is sold in 2 shops, one with a 30% discount the other with a discount of 2/9. How much is the discount in the two shops and which is cheaper and by how much? Non-calculator


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning