5, 11, 21, 35, 53, ... Find the nth term of this sequence.

By calculating the difference between each of the progressions, we see that the first difference is 6, the next is 10, then 14 and finally 18. It is easy to observe that the jump increases by 4 each time, and so we call this the second difference. Because the second difference is the same this tells us that the nth term will be quadratic and thus include a squared term. Halving the second difference will give us a value of 2 and tells us that the squared term is 2n^2. By putting this into the first term, we get 2(1)^2, which gives us 2. To reach 5 and satisfy the progression, we must add 3. In total, this gives us an nth term of 2n^2 + 3.

MG
Answered by Majed G. Maths tutor

29779 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the simplified version of ( 2a+4a^2+3a)


When solving two simultaneous equations, when should you use the method of elimination and when would you use the method of substitution?


Trigonometry: what is it, and how do I do it?


How do you calculate ratios? Example question: 'White paint costs £2.80 per litre, Blue paint costs £3.50 per litre, White paint and blue paint are mixed in the ratio 3:2. Work out the cost of 18 litres of the mixture [4 marks]' AQA Mathematics (8300)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning