For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.

f'(x)=-2(3x+4)^(-3) * 3 = -6(3x+4)^(-3);
f''(x)= 18(3x+4)^(-4) * 3 = 54(3x+4)^(-4);
both found by using the chain rule for differentiation.

Then Maclaurin series up to x^2 is: f(x)=f(0)+f'(0)x+1/2 f''(0)x^2;
Which here gives f(x)=4^(-2) - 6*(4)^(-3) x + 27*(4)^(-4) x^2.

JM
Answered by James M. Further Mathematics tutor

3601 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the square roots of 2 + isqrt(5)


Prove ∑r^3 = 1/4 n^2(n+1)^2


Integrate (x+4)/(x^2+2x+2)


The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning